Показване на основна информация на публикация

dc.contributor.author Jules Damji, Brooke Wenig, Tathagata Das, Denny Lee
dc.date.accessioned 2023-08-24T11:39:27Z
dc.date.available 2023-08-24T11:39:27Z
dc.date.issued 2020-08-25
dc.identifier.issn 978-1492050049
dc.identifier.uri http://elib.ipa.government.bg:8080/xmlui/handle/123456789/1276
dc.description Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow bg_BG
dc.description.abstract Локация на изданието: книгата се намира в централния офис на ИПА. bg_BG
dc.language.iso en bg_BG
dc.publisher O'Reilly Media bg_BG
dc.relation.isformatof Сигн; 718
dc.title Learning Spark bg_BG
dc.title.alternative 2nd Edition bg_BG
dc.type Book bg_BG


Файлове в тази публикация

Тази публикация се показва в следните колекции

Показване на основна информация на публикация

Търсене в библиотеката


Разширено търсене

Разлистване

Моя регистрация